设等差数列{an}与{bn}的前n项之和分别为Sn与Sn′,若SnSn′=7n+2n+3,则a7b7=______.

问题描述:

设等差数列{an}与{bn}的前n项之和分别为SnSn,若

Sn
Sn
7n+2
n+3
,则
a7
b7
=______.

∵{an}为等差数列,其前n项之和为Sn,∴S2n-1=(2n−1)(a1+a2n−1)2=(2n−1)×2an2=(2n-1)•an,同理可得,S′2n-1=(2n-1)•bn,∴anbn=S2n−1S2n−1′,又SnS′n=7n+2n+3,∴S2n−1S′2n−1=7(2n−1)+2(2n−1)+3...
答案解析:利用等差数列的性质S2n-1=(2n-1)•an,S′2n-1=(2n-1)•bn即可求得

a7
b7

考试点:等差数列的性质.
知识点:本题考查等差数列的性质,求得
an
bn
=
S2n−1
S′2n−1
是关键,考查熟练应用等差数列解决问题的能力,属于中档题.