在矩形abcd中,E是AD上一点,F是AB上一点,EF垂直于EC,且EF=EC,DE=4cm,ABCD周长为32cm,求AB长

问题描述:

在矩形abcd中,E是AD上一点,F是AB上一点,EF垂直于EC,且EF=EC,DE=4cm,ABCD周长为32cm,求AB长

因为EF垂直EC,且EF=EC,则可以证明三角形CDE全等于三角形EAF,则CD=AE,又周长是32,即CD+ED+AE=16,又DE=4,CD=AE,解得CD=AB=6