若(-1+3i)/(1+i)=a+bi(i是虚数单位,a,b∈R),则乘积ab的值是
问题描述:
若(-1+3i)/(1+i)=a+bi(i是虚数单位,a,b∈R),则乘积ab的值是
答
(-1+3i)/(1+i)
=[(-1+3i)×(1-i)]/[(1-i)×(1+i)]
=(2+4i)/(2)
=1+2i
=a+bi
则:a=1、b=2
则:ab=2
答
(-1+3i)/(1+i)=(-1+3i)(1-i)/(1+i)(1-i)=(-1+3i+i+3)/2=2i+1=1+2i=a+bi
所以a=1,b=2
ab=2!