设数列{An}的前n项和为Sn=2An-2^2 (1)证明{A(n+1)-2A(n)是等比数列 (2)求A(n)的通项公式

问题描述:

设数列{An}的前n项和为Sn=2An-2^2 (1)证明{A(n+1)-2A(n)是等比数列 (2)求A(n)的通项公式

1)Sn=2an-2^n
S(n+1)=2a(n+1)-2^(n+1)
相减得a(n+1)=2a(n+1)-2^(n+1)-2an+2^n
化简得a(n+1)-2an=2^n
说明{a(n+1)-2an}是等比数列
2)a(n+1)-2an=2^n
2(an-2a(n-1))=2*2^(n-1)=2^n
2^2(a(n-1)-a(n-2))=2^2*2^(n-2)=2^n
.
.
.
2^(n-1)*(a2-2a1)=2^(n-1)*2^1=2^n
上面式子相加有:
a(n+1)-2^n*a1`=(2^n)*n
Sn=2an-2^n中令n=1,a1=2
所以a(n+1)=(2^n)*(n+2)
an=(2^(n-1))*(n+1)