△ABC的三边分别为a,b,c,且a=1,B=45°,S△ABC=2,则△ABC的外接圆的直径为(  ) A.5 B.52 C.43 D.62

问题描述:

△ABC的三边分别为a,b,c,且a=1,B=45°,S△ABC=2,则△ABC的外接圆的直径为(  )
A. 5
B. 5

2

C. 4
3

D. 6
2

∵a=1,B=45°,S△ABC=2,
∴由三角形的面积公式得:S=

1
2
acsinB=
1
2
×1×c×
2
2
=2,
∴c=4
2

又a=1,cosB=
2
2

根据余弦定理得:b2=1+32-8=25,解得b=5.
∴△ABC的外接圆的直径为
b
sinB
=
5
2
2
=5
2

故选B.