如图所示,四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,M、N分别是AB、PC的中点,PA=AD=a.(1)求证:MN∥平面PAD;(2)求证:平面PMC⊥平面PCD.

问题描述:

如图所示,四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,M、N分别是AB、PC的中点,PA=AD=a.

(1)求证:MN∥平面PAD;
(2)求证:平面PMC⊥平面PCD.

证明:(1)设PD的中点为E,连接AE、NE,由N为PC的中点知EN∥.12DC,又ABCD是矩形,∴DC∥.AB,∴EN∥.12AB又M是AB的中点,∴EN∥.AM,∴AMNE是平行四边形∴MN∥AE,而AE⊂平面PAD,NM⊄平面PAD∴MN∥平面PAD证明:...
答案解析:(1)欲证MN∥平面PAD,根据直线与平面平行的判定定理可知只需证MN与平面PAD内一直线平行即可,设PD的中点为E,连接AE、NE,易证AMNE是平行四边形,则MN∥AE,而AE⊂平面PAD,NM⊄平面PAD,满足定理所需条件;
(2)欲证平面PMC⊥平面PCD,根据面面垂直的判定定理可知在平面PMC内一直线与平面PCD垂直,而AE⊥PD,CD⊥AE,PD∩CD=D,根据线面垂直的判定定理可知AE⊥平面PCD,而MN∥AE,则MN⊥平面PCD,又MN⊂平面PMC,满足定理所需条件.
考试点:平面与平面垂直的判定;直线与平面平行的判定;直线与平面垂直的性质.
知识点:本题主要考查平面与平面垂直的判定,以及线面平行的判定,同时考查了空间想象能力和推理能力,以及转化与划归的思想,属于基础题.