如图,PA⊥平面ABCD,四边形ABCD是矩形,PA=AD,M、N分别是AB、PC的中点, (1)求平面PCD与平面ABCD所成锐二面角的大小; (2)求证:平面MND⊥平面PCD.
问题描述:
如图,PA⊥平面ABCD,四边形ABCD是矩形,PA=AD,M、N分别是AB、PC的中点,
(1)求平面PCD与平面ABCD所成锐二面角的大小;
(2)求证:平面MND⊥平面PCD.
答
(1)∵PA⊥平面ABCD,CD⊂PA⊥平面ABCD,∴PA⊥CD,又∵四边形ABCD是矩形,∴AD⊥CD又∵AD∩PA=A∴CD⊥平面PAD,又∵PD⊂平面PAD,∴CD⊥PD故∠PDA即为平面PCD与平面ABCD所成锐二面角的平面角,又∵在直角三角形PAD...