已知二次函数y1=ax2+bx+c(a≠0)的图象经过三点(1,0),(-3,0),(0,-3/2). (1)求二次函数的解析式,并在给定的直角坐标系中作出这个函数的图象; (2)若反比例函数y2=2/x(x>0

问题描述:

已知二次函数y1=ax2+bx+c(a≠0)的图象经过三点(1,0),(-3,0),(0,-

3
2
).

(1)求二次函数的解析式,并在给定的直角坐标系中作出这个函数的图象;
(2)若反比例函数y2=
2
x
(x>0)的图象与二次函数y1=ax2+bx+c(a≠0)的图象在第一象限内交于点A(x0,y0),x0落在两个相邻的正整数之间,请你观察图象,写出这两个相邻的正整数;
(3)若反比例函数y2=
k
x
(x>0,k>0)的图象与二次函数y1=ax2+bx+c(a≠0)的图象在第一象限内的交点A,点A的横坐标x0满足2<x0<3,试求实数k的取值范围.

(1)设抛物线解析式为y=a(x-1)(x+3),
将(0,-

3
2
)代入,解得a=
1
2

∴抛物线解析式为y=
1
2
x2+x-
3
2

(2)正确的画出反比例函数在第一象限内的图象,
由图象可知,交点的横坐标x0落在1和2之间,从而得出这两个相邻的正整数为1与2.
(3)由函数图象或函数性质可知:当2<x<3时,
对y1=
1
2
x2+x-
3
2
,y1随着x增大而增大,
对y2=
k
x
(k>0),y2随着x的增大而减小.
因为A(x0,y0)为二次函数图象与反比例函数图象的交点,
所以当x0=2时,由反比例函数图象在二次函数上方得y2>y1
k
2
1
2
×22+2-
3
2

解得k>5.
同理,当x0=3时,由二次函数图象在反比例上方得y1>y2
1
2
×32+3-
3
2
k
3

解k<18,
所以K的取值范围为5<k<18.