正方形ABCD中,E,F是AD,DC上的点,且DE=DF,若∠EBF=45度,且EF=2根号2,求正方形ABCD周长

问题描述:

正方形ABCD中,E,F是AD,DC上的点,且DE=DF,若∠EBF=45度,且EF=2根号2,求正方形ABCD周长

延长DA至G,使AG=FC;令BD与EF的交点为H.
∵ABCD是正方形,∴AB=CB、∠GAB=∠FCB=90°,又AG=FC,∴△ABG≌△CBF,
∴BG=BF、∠ABG=∠CBH.······①
∵ABCD是正方形,∴∠CBD=∠ABD=45°,又∠EBF=45°,∴∠ABD=∠EBF,
∴∠ABE+∠DBE=∠DBE+∠DBF,∴∠ABE=∠DBF.······②
①+②,得:∠ABG+∠ABE=∠CBH+∠DBF,∴∠EBG=∠CBD=45°,
∴∠EBG=∠EBF=45°,而BG=BF、BE=BE,∴△EBG≌△EBF,∴EG=EF=2√2,
∴AE+AG=2√2,∴AE+CF=2√2.······③
∵ABCD是正方形,∴AD=CD、又DE=DF,∴AD-DE=CD-DF,∴AE=CF.······④
由③、④,得:AE=√2.
∵AE=CF、AB=CB、∠EAB=∠FCB=90°,∴△ABE≌△CBF,∴BE=BF,
∴B在EF的垂直平分线上.
∵DE=DF,∴D在EF的垂直平分线上.
∵B、D都在EF的垂直平分线上,∴BD是EF的垂直平分线,∴DH⊥EH、EH=EF/2=√2.
∵ABCD是正方形,∴DE⊥DF,又EH=FH,∴DH=EH=√2.
∵DH⊥EH、EH=DH=√2,∴DE=2,而AE=√2,∴AD=DE+AE=2+√2,
∴正方形ABCD的周长=4AD=8+8√2.