如果A,B都是n阶矩阵,E是n阶单位矩阵,则AB=E如何推出BA=E?
问题描述:
如果A,B都是n阶矩阵,E是n阶单位矩阵,则AB=E如何推出BA=E?
AB=E能说明A有逆矩阵吗?不是要AB=BA=E才说明A有逆矩阵吗?
答
因为AB=E,所以|AB|=|E|=1不=0,所以A与B皆可逆,且A^(-1)*A*B=A^(-1)*E=A^(-1)
即B=A^(-1)
于是BA=A^(-1)*A=E