设a,b∈R+,则lim(a^n+b^n)/(a+b)^n=

问题描述:

设a,b∈R+,则lim(a^n+b^n)/(a+b)^n=

(1)当a=b时,原式=lim(n->∞)[2a^n/(2a)^n]=lim(n->∞)[1/2^(n-1)]=0;(2)当alim(n->∞)[(a/b)^n]=0,lim(n->∞)[(a/b+1)^n]=∞原式=lim(n->∞)[((a/b)^n+1)/(a/b+1)^n] (分子分母同除b)=(0+1)/∞ =0;(3)当a>b...