已知数列{1an+2}成等差数列,且a3=-116,a5=-137,则a8=______.

问题描述:

已知数列{

1
an+2
}成等差数列,且a3=-
11
6
,a5=-
13
7
,则a8=______.

∵数列{

1
an+2
}成等差数列,且a3=-
11
6
,a5=-
13
7

∴d=
1
2
(
1
a5+2
1
a3+2
)

=
1
2
(
1
13
7
+2
1
11
6
+2
)

=
1
2

1
a1+2
+2×
1
2
=
1
11
6
+2

1
a1+2
=5,
1
a8+2
=5+7×
1
2
=
17
2

解得a8=-
32
17

故答案为:-
32
17

答案解析:由已知条件推导出数列{
1
an+2
}是首项为5,公差为
1
2
的等差数列,由此能求出
1
a8+2
=5+7×
1
2
=
17
2
,从而得到a8=-
32
17

考试点:等差数列的通项公式.
知识点:本题考查数列中第8项的求法,是中档题,解题时要注意等差数列的性质的灵活运用.