已知等差数列an的公差不为零,且a3=5,a1,a2,a5成等比数列,

问题描述:

已知等差数列an的公差不为零,且a3=5,a1,a2,a5成等比数列,
(1)求数列an的通项公式.
(2)若数列bn满足b1+2*b2+2^2*b3+...+2^n-1*bn=an,求数列bn的前n项和Tn.

1)因为an为等差数列所以a1=5-2d a2=5-d a5=5+2d又a1,a2,a5成等比数列所以(a2)^2=a1*a5 既(5-d)^2=(5-2d)*(5+2d) 又d≠0 解得d=2 则a1=1an=a1+(n-1)d=1+(n-1)*2=2n-12)b1+2*b2+2^2*b3+...+2^n-1*bn=anb1+2*b2+2^2...