已知F1,F2 是椭圆的两个焦点.满足MF1*MF2 =0的点M总在椭圆内部,则椭圆离心率的取值范围是( )

问题描述:

已知F1,F2 是椭圆的两个焦点.满足MF1*MF2 =0的点M总在椭圆内部,则椭圆离心率的取值范围是( )

设椭圆为x^2/a^2+y^2/b^2=1,
因为MF1·MF2 =0,则MF1⊥MF2
则M在以F1,F2为直径的圆周上,即要求此圆在椭圆内即可
圆方程x^2+y^2=c^2
即c<b
c^2