已知F1 F2是椭圆C:X^2/a^2 y^2/b^2=1(a>b>0)的两个焦点,P为椭圆C上一点,且PF1⊥PF2.若△PF1F2的面积为9,则b=?
问题描述:
已知F1 F2是椭圆C:X^2/a^2 y^2/b^2=1(a>b>0)的两个焦点,P为椭圆C上一点,且PF1⊥PF2.若△PF1F2的面积为9,则b=?
答
xxishui,
椭圆:x²/a²+y²/b²=1,c²=a²-b²
∴F1(-c,0),F2(c,0),F1F2=2c
∵PF1⊥PF2
∴PF1²+PF2²=F1F2²=4c²=4(a²-b²)①
由椭圆定义:PF1+PF2=2a,
∴PF1²+PF2²+2PF1×PF2=4a²②
②-①得2PF1×PF2=4b²,
∴PF1×PF2=2b²
S△PF1F2=PF1×PF2/2=2b²/2=b²=9
∴b=3