在数列{an}和{bn}是两个无穷等差数列,公差分别为d1和d2,求证:数列{an+bn}是等差数列,并求它的公差.
问题描述:
在数列{an}和{bn}是两个无穷等差数列,公差分别为d1和d2,求证:数列{an+bn}是等差数列,并求它的公差.
答
当然是d1+d2
答
an+bn-(an-1+bn-1)=(an-an-1)+(bn-bn-1)=d1+d2,所以{an+bn}是等差数列,公差是d1+d2