已知数列{an}的首项a1=3,通项an与前n项和Sn之间满足2an=SnSn-1(n≥2).(1)求证{1/Sn}是等差数列,并求公差;(2)求数列{an}的通项公式.
问题描述:
已知数列{an}的首项a1=3,通项an与前n项和Sn之间满足2an=SnSn-1(n≥2).
(1)求证{
}是等差数列,并求公差;1 Sn
(2)求数列{an}的通项公式.
答
(1)∵2an=SnSn-1(n≥2)∴2(Sn-Sn-1)=SnSn-1
两边同时除以SnSn-1,得2(
-1 Sn-1
)=11 Sn
∴
-1 Sn
=-1 Sn-1
1 2
∴{
}是等差数列,公差d=-1 Sn
1 2
(2)∵
=1 S1
=1 a1
1 3
∴
=1 Sn
+(n-1)×(-1 3
)=-1 2
n+1 2
=5 6
5-3n 6
∴Sn=
6 5-3n
当n≥2时,an=
SnSn-1=1 2
×1 2
×6 5-3n
=6 8-3n
18 (5-3n)(8-3n)
∴an=
3
,n=1
18 (8-3n)(5-3n) ,n≥2