1.设等差数列{an}满足:

问题描述:

1.设等差数列{an}满足:
设等差数列{an}满足:[sin^2(a3)-cos^2(a3)+cos^2(a3)*cos^2(a6)-sin^2(a3)*sin^2(a6)]/sin(a4+a5)=1,公差d∈(-1,0).若当且仅当n=9时,数列{an}的前n项和Sn取得最大值,则首项a1的取值范围是()
A.(7π/6,4π/3)  B.(4π/3,3π/2)  C.[7π/6,4π/3]  D.[4π/3,3π/2]

D 解析:化简第一个式子(提公因式 利用平方差公式)得Sin(a3-a6)=1 得d=-π/6 带入前n项和公式得Sn=d/2n^2+(a1-d/2)n -b/2a为对称轴 对称轴应该大于等于8.5 小于等于9.5 解之得答案为d