求证3+cos4α-4cos2α=(8sinα)^4
问题描述:
求证3+cos4α-4cos2α=(8sinα)^4
证(1-cos2α)/(1+cos2α)=tan²α
(1+sin2α)/(cosα+sinα)=cosα+sinα
答
证明:1)3+cos4α-4cos2α=2+(1+cos4α)-4cos2α=2+2(cos2α)^2-4cos2α=2[1+(cos2α)^2-2cos2α]=2(1-cos2α)^2=2*{1-[(cosα)^2-(sinα)^2}^2=2*{1-(cosα)^2+(sinα)^2}^2=2*{2(sinα)^2}^2=8*(sinα)^42)(1-c...