如图,△PQR是⊙O的内接正三角形,四边形ABCD是⊙O的内接正方形,BC∥QR,则∠AOQ=______.

问题描述:

如图,△PQR是⊙O的内接正三角形,四边形ABCD是⊙O的内接正方形,BC∥QR,则∠AOQ=______.

连结OD,如图,∵△PQR是⊙O的内接正三角形,∴PQ=PR=QR,∴∠POQ=13×360°=120°,OP⊥QR,∵BC∥QR,∴OP⊥BC,∵四边形ABCD是⊙O的内接正方形,∴OP⊥AD,∠AOD=90°,∴弧AP=弧DP,∴∠AOP=∠DOP,∴∠AOP=12×...
答案解析:连结OD,根据等边三角形性质得PQ=PR=QR,则∠POQ=

1
3
×360°=120°,根据圆内接等边三角形的性质有OP⊥QR,而BC∥QR,所以OP⊥BC,根据四边形ABCD是⊙O的内接正方形,则OP⊥AD,∠AOD=90°,然后根据垂径定理可得∠AOP=∠DOP=45°,再利用∠AOQ=∠POQ-∠AOP计算即可.
考试点:圆周角定理;垂径定理.

知识点:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了垂径定理.