已知数列an是首项与公比均为1/3的等比数列,数列bn的前n项和Bn=1/2(n²+n)
问题描述:
已知数列an是首项与公比均为1/3的等比数列,数列bn的前n项和Bn=1/2(n²+n)
设anbn的前n项和为sn,求证1/3≦sn≦3/4 ,
答
an=(1/3)^n,Bn=n(n+1)/2,bn=Bn-Bn-1=n(n+1)/2-(n-1)n/2=n
anbn=(1/3)^n*n
Sn=1/3*1+(1/3)^2*2+(1/3)^3*3+.+(1/3)^(n-1)*(n-1)+(1/3)^n*n(1)
(1)式两边乘以1/3
1/3Sn=(1/3)^2*1+(1/3)^3*2+(1/3)^4*3+.+(1/3)^n*(n-1)+(1/3)^(n+1)*n(2)
(1)式-(2)式,得
2/3Sn=[1/3+(1/3)^2+(1/3)^3+.+(1/3)^n]-(1/3)^(n+1)*n
=1/3[1-(1/3)^n]/(1-1/3)-(1/3)^(n+1)*n
=1/2-(1/2+n/3)(1/3)^n
Sn=3/4-(3/4+n/2)(1/3)^n=1/3
所以1/3