如图所示,在以O为圆心的两个同心圆中,大圆的弦AB和CD相等,且AB与小圆相切于点E,求证:CD与小圆相切.
问题描述:
如图所示,在以O为圆心的两个同心圆中,大圆的弦AB和CD相等,且AB与小圆相切于点E,求证:CD与小圆相切.
答
证明:如右图所示,连接OE,过O作OF⊥CD于F.
∵AB与小⊙O切于点E,
∴OE⊥AB,
∵AB=CD,
∴OE=OF(同圆等弦的弦心距相等),
∴CD与小⊙O相切.
答案解析:要证CD是小圆的切线,过O作OF⊥CD于F,AB与小⊙O切于点E,根据同圆等弦的弦心距相等可知OE=OF.
考试点:切线的判定.
知识点:本题考查了切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线;解决问题的关键是同圆等弦的弦心距相等.