面积为1的三角形pmn中tan∠PMN=1/2,tan∠PNM=-2,建立适当的坐标系,求出以M,N为焦点且过点P的双曲线方程
问题描述:
面积为1的三角形pmn中tan∠PMN=1/2,tan∠PNM=-2,建立适当的坐标系,求出以M,N为焦点且过点P的双曲线方程
答
如果设MN边上的高为h的话MN=h/(tan∠PMN)+h/(tan∠PNM)=3h/2(这条式最好画图来推导,首先用锐角三角形来理解,然后推广至钝角三角形)三角形PMN的面积S=MN*h/2=3h^2/4=1求得h=2/sqrt(3),MN=sqrt(3).(sqrt=根号)所以椭...