在面积为1的三角形PMN中,tanM=1/2,tanN=-2,建立适当的直角坐标系,求出以M,N为焦点,且过P点的椭圆方程

问题描述:

在面积为1的三角形PMN中,tanM=1/2,tanN=-2,建立适当的直角坐标系,求出以M,N为焦点,且过P点的椭圆方程
以MN中点为中心.要求用到椭圆的焦点三角形面积公式.

不妨设 M,N都在x轴上,关于原点对称
tan(M+N)=(tanM+tanN)/(1-tanMtanN)=(1/2-2)/(1+1)=-3/4
所以 tanP=3/4=2tan(P/2)/【1-tan²(P/2)】
tan(p/2)=-3或tan(P/2)=1/3
因为(P/2)是锐角
tan(P/2)=1/3
焦点三角形面积公式 b²tan(P/2)=1
b²=3
设三角形高为h
[h/tanM-h/(-tanN)]*h/2=1
3/4h²=1
h²=4/3
2c=h/tanM-h/(-tanN)=h*(3/2)
4c²=3
c²=3/4
a²=b²+c²=15/4
方程:x²/(15/4)+y²/3=1b²tan(P/2)=1?不是b²除以tan(P/2)吗...你好,应该是乘以双曲线的是除