椭圆左右焦点分别为(-c,0)(c,0),若椭圆上存在一点P使a*RF1=c*PF2,则该椭圆离心率取值范围是?
问题描述:
椭圆左右焦点分别为(-c,0)(c,0),若椭圆上存在一点P使a*RF1=c*PF2,则该椭圆离心率取值范围是?
答
aPF1=cPF2
则:PF1=(c/a)PF2=ePF2
又:PF1+PF2=2a
即:ePF2+PF2=2a
得:PF2=2a/(e+1)
知识:在椭圆中,焦半径PF的范围是:[a-c,a+c]
所以,a-c≦2a/(e+1)≦a+c
同除a,1-e≦2/(e+1)≦1+e
解得:e≧√2-1
又椭圆中,0