向量m=(2cosC/2,-sinC) n=(cosC/2,2sinC) 向量m⊥n 角C=60° 若a²=2b²+c²求tanA的值
问题描述:
向量m=(2cosC/2,-sinC) n=(cosC/2,2sinC) 向量m⊥n 角C=60° 若a²=2b²+c²求tanA的值
答
向量m=(2cosC/2,-sinC) n=(cosC/2,2sinC) 向量m⊥n 角C=60° 若a²=2b²+c²求tanA的值