在三角形ABC中,角A,B,C的对边分别为a,b,c,向量m=(2cosc/2,-sinc),n(cosc/2,2sinc),且m⊥n,若a^2=2b^2+
问题描述:
在三角形ABC中,角A,B,C的对边分别为a,b,c,向量m=(2cosc/2,-sinc),n(cosc/2,2sinc),且m⊥n,若a^2=2b^2+
若a^2=2b^2+c^2,求tanA的值
答
m⊥n=> m.n=0(2cosc/2,-sinc).(cosc/2,2sinc)=02(cosc/2)^2-2(sinc)^2=0cosC +1 - 2(1-(cosC)^2 ) =02(cosC)^2 + cosC-1=0(2cosC-1)(cosC+1)=0C = π/3a^2=2b^2+c^2= b^2 + c^2 +b^2by cosine ruleb^2 = -2bccosAcos...答案写成(-3根号147)/7,对吗?