已知正五边形ABCDE的两条对角线AC、BD相交于点F,求证:AB=AF

问题描述:

已知正五边形ABCDE的两条对角线AC、BD相交于点F,求证:AB=AF

证明:正五边形的内角和为180*(5-2)=540(度).
∴∠ABC=∠BCD=540/5=108°.
又BC=CD,则:∠CBD=(180°-∠BCD)/2=36°;
同理可求:∠BAC=36°.
∴∠ABF=∠ABC-∠CBD=72°;
∠AFB=180°-∠BAC-∠ABF=72°.
故∠ABF=∠AFB=72°,AB=AF.

证明:
∵ABCD是正五边形
∴∠ABC=∠BCD=108°
∴∠BAC =∠BCA=36°
∵CB=CD
∴∠CBD=36°
∴∠ABC=108-36=72°
∴∠AFB=180-36-72=72°
即∠AFB=∠ABF
∴AB=AF