如图,边长为1的正方形OABC的顶点O为坐标原点,点A在x轴的正半轴上,点C在y轴的正半轴上.动点D在线段BC上移动(不与B,C重合),连接OD,过点D作DE⊥OD,交边AB于点E,连接OE.记CD的长为t
问题描述:
如图,边长为1的正方形OABC的顶点O为坐标原点,点A在x轴的正半轴上,点C在y轴的正半轴上.动点D在线段BC上移动(不与B,C重合),连接OD,过点D作DE⊥OD,交边AB于点E,连接OE.记CD的长为t.
(1)当t=
时,求直线DE的函数表达式;1 3
(2)如果记梯形COEB的面积为S,那么是否存在S的最大值?若存在,请求出这个最大值及此时t的值;若不存在,请说明理由;
(3)当OD2+DE2的算术平方根取最小值时,求点E的坐标.
答
(1)∵∠ODC+∠EDB=∠ODC+∠COD=90°,∴∠DOC=∠EDB,同理得∠ODC=∠DEB,∵∠OCD=∠B=90°,∴△CDO∽△BED,∴CDBE=COBD,即13BE=11−13,得BE=29,则点E的坐标为E(1,79),设直线DE的一次函数表达式为y=kx+...