如图,在平面直角坐标系xOy中,矩形OABC的两边分别在x轴和y轴的正半轴上,OA=3,OC=2.动点D在线段BC上移动(不与B、C重合),连接OD,作DE⊥OD交边AB于点E,连接OE.设CD的长为t. (1)当t=1

问题描述:

如图,在平面直角坐标系xOy中,矩形OABC的两边分别在x轴和y轴的正半轴上,OA=3,OC=2.动点D在线段BC上移动(不与B、C重合),连接OD,作DE⊥OD交边AB于点E,连接OE.设CD的长为t.
(1)当t=1时,求直线DE的解析式.
(2)设梯形COEB的面积为S,求S与t之间的函数关系式,并写出自变量t的取值范围.
(3)是否存在t的值,使得OE的长取得最小值?若存在,求出此时t的值并求出点E的坐标;若不存在,请说明理由.

(1)如图,∵四边形OABC是矩形,且DE⊥OD,∴∠1+∠2=90°,∠3+∠2=90°.∴∠1=∠3.又∵∠OCD=∠B=90°,∴△OCD∽△DBE.∴CDBE=COBD.∴当t=1时,1BE=22,∴BE=1.∴点E的坐标为(3,1).设直线DE的解析式...