设f1(x)=21+x,定义fn+1(x)=f1[fn(x)],an=fn(0)−1fn(0)+2,其中n∈N*,则数列{an}的通项______.
问题描述:
设f1(x)=
,定义fn+1(x)=f1[fn(x)],an=2 1+x
,其中n∈N*,则数列{an}的通项______.
fn(0)−1
fn(0)+2
答
(1)∵f1(0)=2,a1=2−12+2=14,fn+1(0)=f1[fn(0)]=21+fn(0),∴an+1=fn+1(0)−1fn+1(0)+2=21+fn(0)−121+fn(0)+2=1−fn(0)4+2fn(0)=-12•fn(0)−1fn(0)+2=-12an,∴q=an+1an=-12,∴数列{an}是首项为14,公...
答案解析:根据已知可得f1(0)=2,a1=
=2−1 2+2
,fn+1(0)=f1[fn(0)]=1 4
,从而an+1=-2 1+fn(0)
an.所以数列{an}是首项为1 2
,公比为-1 4
的等比数列,故可求数列{an}的通项.1 2
考试点:数列递推式.
知识点:本题考查由数列递推式求数列的通项,属中档题,解决本题的关键准确理解题意,寻求数列递推式.