设f1(x)=21+x,定义fn+1(x)=f1[fn(x)],an=fn(0)−1fn(0)+2,其中n∈N*,则数列{an}的通项______.

问题描述:

f1(x)=

2
1+x
,定义fn+1(x)=f1[fn(x)],an
fn(0)−1
fn(0)+2
,其中n∈N*,则数列{an}的通项______.

(1)∵f1(0)=2,a1=2−12+2=14,fn+1(0)=f1[fn(0)]=21+fn(0),∴an+1=fn+1(0)−1fn+1(0)+2=21+fn(0)−121+fn(0)+2=1−fn(0)4+2fn(0)=-12•fn(0)−1fn(0)+2=-12an,∴q=an+1an=-12,∴数列{an}是首项为14,公...
答案解析:根据已知可得f1(0)=2,a1=

2−1
2+2
=
1
4
,fn+1(0)=f1[fn(0)]=
2
1+fn(0)
,从而an+1=-
1
2
an.所以数列{an}是首项为
1
4
,公比为-
1
2
的等比数列,故可求数列{an}的通项.
考试点:数列递推式.
知识点:本题考查由数列递推式求数列的通项,属中档题,解决本题的关键准确理解题意,寻求数列递推式.