设函数f0(x)=(1/2)|x|,f1(x)=|f0(x)−1/2|,fn(x)=|fn−1(x)−(1/2)n|,n≥1,n∈N,则方程fn(x)=(1/n+2)n有_个实数根.

问题描述:

设函数f0(x)=(

1
2
)|x|f1(x)=|f0(x)−
1
2
|,fn(x)=|fn−1(x)−(
1
2
)
n
|,n≥1,n∈N,则方程fn(x)=(
1
n+2
)n
有______个实数根.

先令n=1,则有:|f0(x)-12|=13,∴(12)|x|=56或16,可知有22=4个根;于是当n=k+1时,会有fk+1(x)=±[fk(x)-(12)k]=(1k+1+2)k+1,依此类推,每个方程去掉绝对值符号,都对应两个方程,而每个方程又会有两个根...