如图,已知D是△ABC的边AB上一点,CE∥AB,DE交AC于点O,且OA=OC,猜想线段CD与线段AE的大小关系和位置关系,并加以证明.

问题描述:

如图,已知D是△ABC的边AB上一点,CE∥AB,DE交AC于点O,且OA=OC,猜想线段CD与线段AE的大小关系和位置关系,并加以证明.
作业帮

猜想线段CD与线段AE的大小关系和位置关系是:相等且平行.
理由:∵CE∥AB,
∴∠DAO=∠ECO,作业帮
∵在△ADO和△ECO中

∠DAO=∠ECO
AO=OC
∠AOD=∠EOC

∴△ADO≌△ECO(ASA),
∴AD=CE,
∴四边形ADCE是平行四边形,
∴CD
.
.
AE.
答案解析:根据CE∥AB,DE交AC于点O,且OA=OC,求证△ADO≌△ECO,然后求证四边形ADCE是平行四边形,即可得出结论.
考试点:平行四边形的判定与性质.
知识点:此题主要考查了平行四边形的判定与性质等知识点的理解和掌握,解答此题的关键是求证△ADO≌△ECO,然后可得证四边形ADCE是平行四边形,即可得出结论.