如图,棱柱ABC-A1B1C1的侧面BCC1B1是菱形,B1C⊥A1B(Ⅰ)证明:平面AB1C⊥平面A1BC1;(Ⅱ)设D是A1C1上的点,且A1B∥平面B1CD,求A1D:DC1的值.

问题描述:

如图,棱柱ABC-A1B1C1的侧面BCC1B1是菱形,B1C⊥A1B

(Ⅰ)证明:平面AB1C⊥平面A1BC1
(Ⅱ)设D是A1C1上的点,且A1B∥平面B1CD,求A1D:DC1的值.

(Ⅰ)证明:因为侧面BCC1B1是菱形,所以B1C⊥BC1又已知B1C⊥A1B,且A1B∩BC1=B,又B1C⊥平面A1BC1,又B1C⊂平面AB1C,所以平面AB1C⊥平面A1BC1.(Ⅱ)设BC1交B1C于点E,连接DE,则DE是平面A1BC1与平面B1CD的交线,...
答案解析:(Ⅰ)证明平面AB1C内的直线B1C垂直平面A1BC1,内的两条相交直线A1B,BC1,即可证明平面AB1C⊥平面A1BC1;(Ⅱ)D是A1C1上的点,且A1B∥平面B1CD,BC1交B1C于点E,连接DE,E是BC1的中点,推出D为A1C1的中点,可得A1D:DC1的值.
考试点:平面与平面垂直的判定;直线与平面平行的性质.
知识点:本题考查平面与平面垂直的判定,直线与平面平行的性质,考查空间想象能力,逻辑思维能力,是中档题.