等差数列{an}中,a7=4,a19=2a9,(Ⅰ)求{an}的通项公式; (Ⅱ)设bn=1nan,求数列{bn}的前n项和Sn.
问题描述:
等差数列{an}中,a7=4,a19=2a9,
(Ⅰ)求{an}的通项公式;
(Ⅱ)设bn=
,求数列{bn}的前n项和Sn. 1 nan
答
(I)设等差数列{an}的公差为d
∵a7=4,a19=2a9,
∴
a1+6d=4
a1+18d=2(a1+8d)
解得,a1=1,d=
1 2
∴an=1+
(n−1)=1 2
1+n 2
(II)∵bn=
=1 nan
=2 n(n+1)
−2 n
2 n+1
∴sn=2(1−
+1 2
−1 2
+…+1 3
−1 n
)1 n+1
=2(1−
)=1 n+1
2n n+1
答案解析:(I)由a7=4,a19=2a9,结合等差数列的通项公式可求a1,d,进而可求an
(II)由bn=
=1 nan
=2 n(n+1)
−2 n
,利用裂项求和即可求解2 n+1
考试点:数列的求和;等差数列的通项公式.
知识点:本题主要考查了等差数列的通项公式及裂项求和方法的应用,试题比较容易