等差数列{an}中,a7=4,a19=2a9,(Ⅰ)求{an}的通项公式; (Ⅱ)设bn=1nan,求数列{bn}的前n项和Sn.

问题描述:

等差数列{an}中,a7=4,a19=2a9
(Ⅰ)求{an}的通项公式;
(Ⅱ)设bn=

1
nan
,求数列{bn}的前n项和Sn

(I)设等差数列{an}的公差为d
∵a7=4,a19=2a9

a1+6d=4
a1+18d=2(a1+8d)

解得,a1=1,d=
1
2

an=1+
1
2
(n−1)
=
1+n
2

(II)∵bn
1
nan
=
2
n(n+1)
=
2
n
2
n+1

∴sn=2(1−
1
2
+
1
2
1
3
+…+
1
n
1
n+1
)

=2(1−
1
n+1
)
=
2n
n+1

答案解析:(I)由a7=4,a19=2a9,结合等差数列的通项公式可求a1,d,进而可求an
(II)由bn
1
nan
=
2
n(n+1)
=
2
n
2
n+1
,利用裂项求和即可求解
考试点:数列的求和;等差数列的通项公式.
知识点:本题主要考查了等差数列的通项公式及裂项求和方法的应用,试题比较容易