数列{an}满足a1=1,a2=2,an+2=2an+1-an+2
问题描述:
数列{an}满足a1=1,a2=2,an+2=2an+1-an+2
答
(Ⅰ)由an+2=2an+1-an+2得,an+2-an+1=an+1-an+2,由bn=an+1-an得,bn+1=bn+2,即bn+1-bn=2,又b1=a2-a1=1,所以{bn}是首项为1,公差为2的等差数列.(Ⅱ)由(Ⅰ)得,bn=1+2(n-1)=2n-1,由bn=an+1-an得,an+1-an=2n-1,则a...你再写一项bn+1=an+2-an+1 bn=an+1-an
带入到an+2-an+1=an+1-an+2式中就是bn+1=bn+2,bn+1-bn=2