已知数列{an}满足an+an+1=2n+1(n∈N*),求证:数列{an}为等差数列的充要条件是a1=1.
问题描述:
已知数列{an}满足an+an+1=2n+1(n∈N*),求证:数列{an}为等差数列的充要条件是a1=1.
答
充分性:∵an+an+1=2n+1,∴an+an+1=n+1+n,即an+1-(n+1)=-(an-n),若a1=1,则a2-(1+1)=-(a1-1)=0,∴a2=2,以此类推得到an=n,此时{an}为等差数列.必要性:∵an+an+1=2n+1,∴an+2+an+1=2n+3,两式相减得a...
答案解析:根据等差数列的定义以及充要条件的定义进行证明即可.
考试点:等差关系的确定.
知识点:本题主要考查等差数列的定义以及充要条件的应用,考查学生的推理能力.