在Rt△ABC中,∠C=90°,且∠A,∠B,∠C所对的边a,b,c满足a+b=cx,则实数x的取值范围是(  ) A.(0,1] B.(0,2] C.(1,2) D.(1,2)

问题描述:

在Rt△ABC中,∠C=90°,且∠A,∠B,∠C所对的边a,b,c满足a+b=cx,则实数x的取值范围是(  )
A. (0,1]
B. (0,2]
C. (1,

2

D. (1,2)

由正弦定理得:

a
sinA
=
b
sinB
=
c
sinC
,又sinC=1,
得到a=csinA,b=csinB,
所以a+b=csinA+csinB=cx,由A+B=90°,得到sinB=cosA,
则x=sinA+sinB=sinA+cosA=
2
sin(A+
π
4
),
∵sin(A+
π
4
)∈(
2
2
,1),
∴x∈(1,
2
).
故选C