已知数列{an}的前n项和为Sn,满足an+Sn=2n.(Ⅰ)证明:数列{an-2}为等比数列,并求出an;(Ⅱ)设bn=(2-n)(an-2),求{bn}的最大项.

问题描述:

已知数列{an}的前n项和为Sn,满足an+Sn=2n.
(Ⅰ)证明:数列{an-2}为等比数列,并求出an
(Ⅱ)设bn=(2-n)(an-2),求{bn}的最大项.

(Ⅰ)证明:由a1+s1=2a1=2得a1=1;
由an+Sn=2n得
an+1+Sn+1=2(n+1)
两式相减得2an+1-an=2,即2an+1-4=an-2,即an+1-2=

1
2
(an-2)
是首项为a1-2=-1,公比为
1
2
的等比数列.故an-2=-(
1
2
)
n−1
,故an=2-(
1
2
)
n−1
,.
(Ⅱ)由(Ⅰ)知bn=(2−n)•(−1)•(
1
2
)n−1=(n−2)•(
1
2
)n−1

bn+1bn
n−1
2n
n−2
2n−1
n−1−2n+4
2n
3−n
2n
≥0得n≤3

由bn+1-bn<0得n>3,所以b1<b2<b3=b4>b5>…>bn
故bn的最大项为b3b4
1
4

答案解析:(Ⅰ)由题设条件进行变形,整理成等比数列的形式,得证.
(Ⅱ)求出bn=(2-n)(an-2)的通项公式,再作差比较相邻项的大小,即可找出最大项.
考试点:等比关系的确定.

知识点:本题考查等比关系的确定以及用作差法求数列的最大项,属于数列中的中档题,有一定的综合性,要求答题者有较好的观察能力及转化化归的能力.