已知数列{an}中,a1=2,a2=4,an+1=3an-2an-1(n≥2,n∈N*). (Ⅰ)证明数列{an+1-an}是等比数列,并求出数列{an}的通项公式; (Ⅱ)记bn=2(an−1)an,数列{bn}的前n项和为Sn,求使Sn
问题描述:
已知数列{an}中,a1=2,a2=4,an+1=3an-2an-1(n≥2,n∈N*).
(Ⅰ)证明数列{an+1-an}是等比数列,并求出数列{an}的通项公式;
(Ⅱ)记bn=
,数列{bn}的前n项和为Sn,求使Sn>2010的n的最小值. 2(an−1) an
答
(I)∵an+1=3an-2an-1(n≥2)
∴(an+1-an)=2(an-an-1)(n≥2)
∵a1=2,a2=4∴a2-a1=2≠0,∴an+1-an≠0
故数列{an+1-an}是公比为2的等比数列
∴an+1-an=(a2-a1)2n-1=2n
∴an=(an-an-1)+(an-1-an-2)+(an-2-an-3)++(a2-a1)+a1
=2n-1+2n-2+2n-3++21+2
=
+2=2n(n≥2)2(1−2n−1) 1−2
又a1=2满足上式,
∴an=2n(n∈N*)
(II)由(I)知bn=
=2(1−2(an−1) an
)=2(1−1 an
)=2−1 2n
1 2n−1
∴Sn=2n−(1+
+1 21
++1 22
)1 2n−1
=2n−
1−
1 2n 1−
1 2
=2n−2(1−
)1 2n
=2n−2+
1 2n−1
由Sn>2010得:2n−2+
>2010,1 2n−1
即n+
>1006,因为n为正整数,所以n的最小值为10061 2n