设双曲线x2a2−y2b2=1(0<a,0<b)的右准线与两渐近交于A,B两点,点F为右焦点,若以AB为直径的圆经过点F,则该双曲线的离心率为(  )A. 233B. 2C. 3D. 2

问题描述:

设双曲线

x2
a2
y2
b2
=1(0<a,0<b)的右准线与两渐近交于A,B两点,点F为右焦点,若以AB为直径的圆经过点F,则该双曲线的离心率为(  )
A.
2
3
3

B. 2
C.
3

D.
2

依题意设AB的中点为C,则C(a2c,0),F(c,0),∴|FC|=c-a2c=c2−a2c=b 2c将x=a2c代入双曲线渐近线方程y=bax,得y=ba•a2c=abc,∴|AB|=2abc∵以AB为直径的圆经过点F,∴|AB|=2|FC|∴2abc=2b 2c,即a2=...
答案解析:关键是条件“以AB为直径的圆经过点F”如何用,故先计算FC的长,再计算AB的长,利用|AB|=2|FC|,建立双曲线特征值a、b、c间的等式,解方程即可得双曲线的离心率
考试点:双曲线的简单性质.
知识点:本题考察了双曲线的标准方程和几何性质离心率的求法,解题时要熟练的将几何条件进行转化,具有一定的代数变换能力