已知直角梯形OABC在如图所示的平面直角坐标系中,AB∥OC,AB=10,OC=22,BC=15,动点M从A点出发,以每秒一个单位长度的速度沿AB向点B运动,同时动点N从C点出发,以每秒2个单位长度的速度沿CO向O点运动.当其中一个动点运动到终点时,两个动点都停止运动.(1)求B点坐标;(2)设运动时间为t秒;①当t为何值时,四边形OAMN的面积是梯形OABC面积的一半;②当t为何值时,四边形OAMN的面积最小,并求出最小面积;③若另有一动点P,在点M、N运动的同时,也从点A出发沿AO运动.在②的条件下,PM+PN的长度也刚好最小,求动点P的速度.

问题描述:

已知直角梯形OABC在如图所示的平面直角坐标系中,AB∥OC,AB=10,OC=22,BC=15,动点M从A点出发,以每秒一个单位长度的速度沿AB向点B运动,同时动点N从C点出发,以每秒2个单位长度的速度沿CO向O点运动.当其中一个动点运作业帮动到终点时,两个动点都停止运动.
(1)求B点坐标;
(2)设运动时间为t秒;
①当t为何值时,四边形OAMN的面积是梯形OABC面积的一半;
②当t为何值时,四边形OAMN的面积最小,并求出最小面积;
③若另有一动点P,在点M、N运动的同时,也从点A出发沿AO运动.在②的条件下,PM+PN的长度也刚好最小,求动点P的速度.


答案解析:(1)由题意可以先构造矩形OABD,然后根据勾股定理进行求解;
(2)是动点型的题要设好未知量:
①AM=t,ON=OC-CN=22-2t,根据四边形OAMN的面积是梯形OABC面积的一半,列出等式求出t值;
②设四边形OAMN的面积为S,用t表示出四边形OAMN的面积,根据一次函数的性质求出最值;
③由题意取N点关于y轴的对称点N′,连接MN′交AO于点P,此时PM+PN=PM+PN′=MN长度最小,表示出点M,N,N′的坐标,设直线MN′的函数关系式为y=kx+b,最后待定系数法进行求解.
考试点:一次函数综合题;勾股定理;轴对称-最短路线问题.


知识点:此题是一道综合题,难度比较大,考查了勾股定理的应用和待定系数法求函数的解析式,动点型的题是中考的热点,平时要多加练习,注意熟悉这方面的题型.