若函数f(x)=13x3-ax2+ax在(0,1)内有极大值,在(1,2)内有极小值,则实数a的取值范围是(  )A. 0<a<43.B. 1<a<43.C. a>1或a<0.D. 0<a<1.

问题描述:

若函数f(x)=

1
3
x3-ax2+ax在(0,1)内有极大值,在(1,2)内有极小值,则实数a的取值范围是(  )
A. 0<a<
4
3
.
B. 1<a<
4
3
.
C. a>1或a<0.
D. 0<a<1.

f′(x)=x2-2ax+a
∵函数f(x)=

1
3
x3-ax2+ax在(0,1)内有极大值,在(1,2)内有极小值,
∴f′(x)=x2-2ax+a在(0,1)和(1,2)上各有一个零点,
f′(0)=a>0
f′(1)=1−a<0
f′(2)=4−3a>0
,解得1<a<
4
3

故选B.
答案解析:对函数f(x)=13x3-ax2+ax求导,根据函数f(x)=13x3-ax2+ax在(0,1)内有极大值,在(1,2)内有极小值,转化为f′(x)的图象在区间(0,1)和(1,2)上与x轴各有一个交点,根据二次函数根的分布求出实数a的取值范围.
考试点:函数在某点取得极值的条件.
知识点:考查利用导数研究函数的极值问题,转化为二次函数根的分布问题,体现了转化的思想方法;求有关二次函数根的分布问题,体现了数形结合的思想,属中档题.