在等差数列{an}中,证明a1+a2+…+a2n−12n−1=an(n∈N*).

问题描述:

在等差数列{an}中,证明

a1+a2+…+a2n−1
2n−1
=an(n∈N*)

证明:在等差数列{an}中,

a1+a2+…+a2n−1
2n−1

=
2n−1
2
(a1+a2n−1
1
2n−1

=
1
2
(a1+a2n-1
=
1
2
(an+an
=an
a1+a2+…+a2n−1
2n−1
=an