在数列{an}中,a1=2,an=2an−1+2n+1(n≥2,n∈N*)(1)令bn=an2n,求证{bn}是等差数列;(2)在(1)的条件下,设Tn=1b1b2+1b2b3+…+1bnbn+1,求Tn.
问题描述:
在数列{an}中,a1=2,an=2an−1+2n+1(n≥2,n∈N*)
(1)令bn=
,求证{bn}是等差数列;an 2n
(2)在(1)的条件下,设Tn=
+1
b1b2
+…+1
b2b3
,求Tn. 1
bnbn+1
答
(1)证明:由an=2an−1+2n+1得
=an 2n
+2…(4分)an−1 2n−1
∴
−an 2n
=2(n≥2)…(5分)an−1 2n−1
又bn=
,∴b1=1,an 2n
∴数列{bn}是首项为1,公差为2的等差数列.…(6分)
(2)由(1)知bn=2n-1,∴
=1
bnbn+1
=1 (2n−1)(2n+1)
(1 2
−1 2n−1
)…(9分)1 2n+1
∴Tn=
(1−1 2
+1 3
−1 3
+…+1 5
−1 2n−1
)=1 2n+1
(1−1 2
)=1 2n+1
…(12分)n 2n+1
答案解析:(1)利用数列递推式,结合bn=
,即可得到数列{bn}是首项为1,公差为2的等差数列;an 2n
(2)利用裂项法,即可求得数列的和.
考试点:数列递推式;数列的求和.
知识点:本题考查数列递推式,考查等差数列的证明,考查数列的求和,解题的关键是正确运用数列递推式,合理运用数列的求和公式,属于中档题.