在数列{an}中,a1=2,an=2an−1+2n+1(n≥2,n∈N*)(1)令bn=an2n,求证{bn}是等差数列;(2)在(1)的条件下,设Tn=1b1b2+1b2b3+…+1bnbn+1,求Tn.

问题描述:

在数列{an}中,a1=2,an=2an−1+2n+1(n≥2,n∈N*)
(1)令bn

an
2n
,求证{bn}是等差数列;
(2)在(1)的条件下,设Tn
1
b1b2
+
1
b2b3
+…+
1
bnbn+1
,求Tn

(1)证明:由an=2an−1+2n+1

an
2n
an−1
2n−1
+2…(4分)
an
2n
an−1
2n−1
=2
(n≥2)…(5分)
bn
an
2n
,∴b1=1,
∴数列{bn}是首项为1,公差为2的等差数列.…(6分)
(2)由(1)知bn=2n-1,∴
1
bnbn+1
1
(2n−1)(2n+1)
=
1
2
(
1
2n−1
1
2n+1
)
…(9分)
Tn
1
2
(1−
1
3
+
1
3
1
5
+…+
1
2n−1
1
2n+1
)
=
1
2
(1−
1
2n+1
)
=
n
2n+1
…(12分)
答案解析:(1)利用数列递推式,结合bn
an
2n
,即可得到数列{bn}是首项为1,公差为2的等差数列;
(2)利用裂项法,即可求得数列的和.
考试点:数列递推式;数列的求和.
知识点:本题考查数列递推式,考查等差数列的证明,考查数列的求和,解题的关键是正确运用数列递推式,合理运用数列的求和公式,属于中档题.