如图,在长方体ABCD-A1B1C1D1中,AA1=AD=a,AB=2a,E、F分别为C1D1、A1D1的中点. (Ⅰ)求证:DE⊥平面BCE; (Ⅱ)求证:AF∥平面BDE.
问题描述:
如图,在长方体ABCD-A1B1C1D1中,AA1=AD=a,AB=2a,E、F分别为C1D1、A1D1的中点.
(Ⅰ)求证:DE⊥平面BCE;
(Ⅱ)求证:AF∥平面BDE.
答
(Ⅰ)证明:∵BC⊥侧面CDD1C1,DE⊂侧面CDD1C1,∴DE⊥BC,(3分)在△CDE中,CD=2a,CE=DE=2a,则有CD2=CE2+DE2,∴∠DEC=90°,∴DE⊥EC,(6分)又BC∩EC=C∴DE⊥平面BCE.(7分)(Ⅱ)证明:连EF、A1C1,连A...