如图,在长方体ABCD-A1B1C1D1中,AA1=AD=a,AB=2a,E、F分别为C1D1、A1D1的中点.(Ⅰ)求证:DE⊥平面BCE;(Ⅱ)求证:AF∥平面BDE.
问题描述:
如图,在长方体ABCD-A1B1C1D1中,AA1=AD=a,AB=2a,E、F分别为C1D1、A1D1的中点.
(Ⅰ)求证:DE⊥平面BCE;
(Ⅱ)求证:AF∥平面BDE.
答
(Ⅰ)证明:∵BC⊥侧面CDD1C1,DE⊂侧面CDD1C1,∴DE⊥BC,(3分)在△CDE中,CD=2a,CE=DE=2a,则有CD2=CE2+DE2,∴∠DEC=90°,∴DE⊥EC,(6分)又BC∩EC=C∴DE⊥平面BCE.(7分)(Ⅱ)证明:连EF、A1C1,连A...
答案解析:(Ⅰ)证明直线与平面垂直,关键要找到两条相交直线与之都垂直:DE⊥BC,DE⊥EC从而得到线面垂直.
(Ⅱ)要证线面平行,需要构造线面平行的判定定理的条件:在平面BDE内找一条与AF平行的直线,通过平行关系的相互转化可的线线平行继而得到线面平行.
考试点:直线与平面垂直的判定;直线与平面平行的判定.
知识点:本小题主要考查空间线面关系,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力,是个中档题,注意辅助线的作法.