在长方体ABCD-A1B1C1D1中,AA1=AD=2AB.若E,F分别为线段A1D1,CC1的中点,则直线EF与平面ABB1A1所成角的余弦值为( ) A.63 B.22 C.33 D.13
问题描述:
在长方体ABCD-A1B1C1D1中,AA1=AD=2AB.若E,F分别为线段A1D1,CC1的中点,则直线EF与平面ABB1A1所成角的余弦值为( )
A.
6
3
B.
2
2
C.
3
3
D.
1 3
答
取BB1中点为N,连接FN,取FN中点为M,连接A1M,A1F 易得EF∥A1M,EF=A1M∵A1F是EF在面A1ABB1上的投影∴∠MA1N为所求的角令AB=1,
在△MA1N中,A1N=
,所以A1M=
2
,
3
则cos∠MA1N=
6
3
故选A