在长方体ABCD-A1B1C1D1中,AA1=AD=2AB.若E,F分别为线段A1D1,CC1的中点,则直线EF与平面ABB1A1所成角的余弦值为(  ) A.63 B.22 C.33 D.13

问题描述:

在长方体ABCD-A1B1C1D1中,AA1=AD=2AB.若E,F分别为线段A1D1,CC1的中点,则直线EF与平面ABB1A1所成角的余弦值为(  )
A.

6
3

B.
2
2

C.
3
3

D.
1
3

取BB1中点为N,连接FN,取FN中点为M,连接A1M,A1F 易得EF∥A1M,EF=A1M∵A1F是EF在面A1ABB1上的投影∴∠MA1N为所求的角令AB=1,
在△MA1N中,A1N=

2
,所以A1M=
3

则cos∠MA1N=
6
3

故选A