已知数列an中,a1=-1,an+an-1+4n+2=0,若bn=an+2n(n∈N*),

问题描述:

已知数列an中,a1=-1,an+an-1+4n+2=0,若bn=an+2n(n∈N*),
求证,1:数列bn是的等差数列
2:求an的通项公式

bn+1= an+1 +2n+2
b1=a1+2=1
an+an+1 +4n+2 =0
bn+bn+1 =0
bn+1 =-bn
{bn}为等比数列 公比为 -1
bn=(-1)^(n-1)
an+2n=bn=(-1)^(n-1)
an= (-1)^(n-1) -2n