如图所示,AC平分∠DAB,AB>AD,CB=CD,CE⊥AB于E, (1)求证:AB=AD+2EB; (2)若AD=9,AB=21,BC=10,求AC的长.
问题描述:
如图所示,AC平分∠DAB,AB>AD,CB=CD,CE⊥AB于E,
(1)求证:AB=AD+2EB;
(2)若AD=9,AB=21,BC=10,求AC的长.
答
(1)证明:延长线段AD,过C作CF⊥AD交AD得延长线于F,
∵AC为∠DAE的平分线,CE⊥AB,CF⊥AF,
∴CE=CF,
在Rt△CFD和Rt△CEB中
,
CF=CE CD=CB
∴Rt△CFD≌Rt△CEB(HL),
∴FD=EB,
又在Rt△CFA和Rt△CEA中
,
CF=CE AC=AC
∴Rt△CFA≌Rt△CEA(HL),
∴AF=AE,
则AB=AE+EB=AF+EB=AD+DF+EB=AD+2EB;
(2)∵AD=9,AB=21,
由(1)得AB=AD+2EB,代入得9+2EB=21,
解得EB=6,
∴AE=AB-EB=21-6=15,
又∵BC=10,
在Rt△CEB中,根据勾股定理得:
CE=
=8,
BC2−BE2
在Rt△ACE中,根据勾股定理得:
AC=
=17.
AE2+CE2